anonymous
  • anonymous
pls explain the concept of homogeneous differential equation
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
A homogenous differential equation is something in the form: \[y(t) \left[ \sum_{k=0}^{n} \left( f_n(t) \frac{d^n}{dt^n} \right) \right]=0\] Where f_n(t) is some arbitrary function multiplying the n^th differential operator acting on y(t). A homogenous equation is just one that is equal to zero. For example: \[y''(t)+y'(t)=0\] Or: \[\sin(t)y'(t)+y(t)\cos(3t)e^{2t}=0\]
anonymous
  • anonymous
how do u solve it
anonymous
  • anonymous
Well, if you have something like: \[y''+3y'+2=0\] You can rewrite it as a polynomial (as something to do with linear algebra and eigenvalues) \[\phi^2+3\phi+2=0 \implies (\phi+2)(\phi+1)=0 \implies \phi=-2,-1\] So the solution is: \[y(t)=c_1e^{-2t}+c_2e^{-t}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
it looks tough

Looking for something else?

Not the answer you are looking for? Search for more explanations.