anonymous
  • anonymous
Solve the initial value problem. Confirm your answer by checking that it conforms to the slope field of the differential equation. dy/dx=(x+2)sin x and y=3 when x=0 I'm not sure what this problem is asking or how to solve it?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
dumbcow
  • dumbcow
integrate both sides \[y = \int\limits_{}^{}(x+2)\sin(x) dx = \int\limits_{}^{}x*\sin(x) +2\sin(x) dx\]
anonymous
  • anonymous
\[\frac{dy}{dx}=(x+2)\sin(x); y(0)=3\] \[\int\limits dy=\int\limits (x+2)\sin(x)dx\] Now it comes down to integration: \[y(x)=\int\limits x sin(x)dx+2 \int\limits \sin(x)dx\] Doing the first one using IBP you get: \[u=x; du=dx; dv=\sin(x)dx; v=-\cos(x)\] \[\int\limits x \sin(x)dx=-xcos(x)+\int\limits \cos(x)dx=-x \cos(x)+\sin(x)+C\] So we get: \[y(x)=-x \cos(x)+\sin(x)-2\cos(x)+C\] Solving the initial value we get: \[y(0)=3=-(0)\cos(0)+\sin(0)-2\cos(0)+C \implies 3=-2+C \implies C=5\] \[y(x)=-x \cos(x)+\sin(x)-2\cos(x)+5\]
anonymous
  • anonymous
Okay I get it; thanks.

Looking for something else?

Not the answer you are looking for? Search for more explanations.