Got Homework?
Connect with other students for help. It's a free community.
Here's the question you clicked on:
 0 viewing
Denebel
Group Title
Solve the initial value problem. Confirm your answer by checking that it conforms to the slope field of the differential equation.
dy/dx=(x+2)sin x and y=3 when x=0
I'm not sure what this problem is asking or how to solve it?
 2 years ago
 2 years ago
Denebel Group Title
Solve the initial value problem. Confirm your answer by checking that it conforms to the slope field of the differential equation. dy/dx=(x+2)sin x and y=3 when x=0 I'm not sure what this problem is asking or how to solve it?
 2 years ago
 2 years ago

This Question is Closed

dumbcow Group TitleBest ResponseYou've already chosen the best response.0
integrate both sides \[y = \int\limits_{}^{}(x+2)\sin(x) dx = \int\limits_{}^{}x*\sin(x) +2\sin(x) dx\]
 2 years ago

malevolence19 Group TitleBest ResponseYou've already chosen the best response.1
\[\frac{dy}{dx}=(x+2)\sin(x); y(0)=3\] \[\int\limits dy=\int\limits (x+2)\sin(x)dx\] Now it comes down to integration: \[y(x)=\int\limits x sin(x)dx+2 \int\limits \sin(x)dx\] Doing the first one using IBP you get: \[u=x; du=dx; dv=\sin(x)dx; v=\cos(x)\] \[\int\limits x \sin(x)dx=xcos(x)+\int\limits \cos(x)dx=x \cos(x)+\sin(x)+C\] So we get: \[y(x)=x \cos(x)+\sin(x)2\cos(x)+C\] Solving the initial value we get: \[y(0)=3=(0)\cos(0)+\sin(0)2\cos(0)+C \implies 3=2+C \implies C=5\] \[y(x)=x \cos(x)+\sin(x)2\cos(x)+5\]
 2 years ago

Denebel Group TitleBest ResponseYou've already chosen the best response.1
Okay I get it; thanks.
 2 years ago
See more questions >>>
Your question is ready. Sign up for free to start getting answers.
spraguer
(Moderator)
5
→ View Detailed Profile
is replying to Can someone tell me what button the professor is hitting...
23
 Teamwork 19 Teammate
 Problem Solving 19 Hero
 Engagement 19 Mad Hatter
 You have blocked this person.
 ✔ You're a fan Checking fan status...
Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.