lim_{x rightarrow -infty} ((1-2x^2-x^4)/(5+x-3x^4))

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

lim_{x rightarrow -infty} ((1-2x^2-x^4)/(5+x-3x^4))

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

guess my last answer was not clear
i will try again. you are taking a limit as x goes to minus infinity. in this case you have a rational function, meaning one polynomial over another. the degrees of both polynomials are the same, and that is all that matters. since the degrees are equal, you take the ratio of the leading coefficients. the leading coefficient of the numerator is -1 (that is the coefficient of the term of degree 4) and the leading coefficient of the denominator is -3 and -1/-3= 1/3
\[\lim_{x \rightarrow \infty } (1-2x^2-x^4)/(5+x-3x^4)\] if we have limit x---> infinity then 1/x ---> 0 and so 1/x^n--->infinity if n>=1

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

we'll try to create 1/x^n in the given polynomial so we can replace them by zero divide both numerator and denominator by x^4( highest power of x in denominator) we'll get \[\lim_{x \rightarrow \infty} (1/x^4-2/x^2-1)/(5/x^4+1/x^3-3)\] REPLACE 1/x, 1/x^2, 1/x^4,1/x^3 by 0 the left part is -1/-3 or 1/3 this is the solution

Not the answer you are looking for?

Search for more explanations.

Ask your own question