Expand the Expression x>0 , y>0 , z>0 log (x^2/yz^4)

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Expand the Expression x>0 , y>0 , z>0 log (x^2/yz^4)

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

log a/b = loga - logb log ab = loga + logb
log n^r = r logn
him can you elaborate more please

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

not really, those are the basic rules for log operations. I can complicate them, but I doubt I can make them any easier ...
can you giveme an example and work it out
ok, but its just gonna be the same thing but with numbers in there
log (1/2) = log(1)-log(2) log(4*3) = log(4)+log(3) log(6^3) = 3 log(6)
youll need all these operations to expand the one youve got
so the final answer would be 3log(6)?
loga (x^2/yz^4)--what do i do with a
"a" stays the same unless your asked to change of base it
log (x^2/yz^4) do you see the division sign? the fraction bar? split this into its subtraction parts
yesI understand it now! thanks
log (x^2/yz^4) = log (x^2) - log (yz^4) where you see the multiplication, split it into its addition parts log (x^2/yz^4) = log (x^2) - log (y)+ log(z^4) and where you see exponents, turn it into its like parts
log (x^2/yz^4) = 2log (x) - log (y)+ 4log(z)
the base "a" doesnt change thruout it unless directed otherswise
i might have a typo in there :)
log (x^2/yz^4) = log (x^2) - (log (y)+ log(z^4)) is better since the hole of it is subtracted log (x^2/yz^4) = log (x^2) - log (y) - log(z^4) and then its the same from there

Not the answer you are looking for?

Search for more explanations.

Ask your own question