A community for students.
Here's the question you clicked on:
 0 viewing
anonymous
 5 years ago
A wooden cylinder floats in water. At equilibrium the cylinder floats with a depth
10 cm submerged. When the cylinder is pushed downward a small distance and
then released, it is observed that it bobs up and down periodically. Assume
viscosity is negligible. The period of oscillation of the cylinder is ;
A) 0.63 s.
B) 0.32 s.
C) 0.10 s.
D) 1.58 s
anonymous
 5 years ago
A wooden cylinder floats in water. At equilibrium the cylinder floats with a depth 10 cm submerged. When the cylinder is pushed downward a small distance and then released, it is observed that it bobs up and down periodically. Assume viscosity is negligible. The period of oscillation of the cylinder is ; A) 0.63 s. B) 0.32 s. C) 0.10 s. D) 1.58 s

This Question is Closed

anonymous
 5 years ago
Best ResponseYou've already chosen the best response.0Have you had differential equations?

anonymous
 5 years ago
Best ResponseYou've already chosen the best response.0I know simple differential equations taught in calculus II ...

anonymous
 5 years ago
Best ResponseYou've already chosen the best response.0I'm thinking about how to approach this. There isn't much given. We need to be able to come up with an expression of the buoyancy force in terms of distance from equilibrium position, and we need the mass of the cylinder. Then we can use\[f = \sqrt{k \over m}\]where \(f\) is the frequency of the oscillations in \(\bf rad \over sec\), \(k\) is the spring constant in \(N*m\) (Here \(k\) is related to the buoyancy force as \(F_B = k*d\) where \(d\) is the depth of the cylinder from the equilibrium condition.), and \(m\) is the mass of the cylinder. Then the period of oscillation can be found to be \[T = {2 \pi \over f}\]

anonymous
 5 years ago
Best ResponseYou've already chosen the best response.0I was thinking about using T=\[T=2\pi \sqrt{m/k}\] and then instead of k we can use \[k=F_b/d\] and use \[m=\rho.V\] instead of the mass and k , but still we don't know how much the cylinder is dicplaced. I don't know if we can cancel it out with the length in volume or not ? because it's very smal we might be able to cancel it out with the length but I'm not sure :/

anonymous
 5 years ago
Best ResponseYou've already chosen the best response.0I agree with your methodology. However you ran into the same problem I did, we don't seem to have enough information given in the problem.
Ask your own question
Sign UpFind more explanations on OpenStudy
Your question is ready. Sign up for free to start getting answers.
spraguer
(Moderator)
5
→ View Detailed Profile
is replying to Can someone tell me what button the professor is hitting...
23
 Teamwork 19 Teammate
 Problem Solving 19 Hero
 Engagement 19 Mad Hatter
 You have blocked this person.
 ✔ You're a fan Checking fan status...
Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.