anonymous
  • anonymous
The height of a cylinder varies inversely with its radius. If the height is doubled, what is the effect on the volume of the cylinder?
Mathematics
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
The height is the inverse of the radius: \[r = \frac{1}{h}\] \[V = \pi r^{2}h = \pi \left(\frac{1}{h} \right)^{2}h = \pi \frac{1}{h}\] So if you double the height:\[V = \pi \frac{1}{2h}\] The volume is halved. I'm pretty sure there's a more elegant way of doing this with calculus but this works too.
anonymous
  • anonymous
r=k/h volume of cylinder= pi r^2 h pi (k/2h)^2 (2h) = pi (k/4h ) 2h = 1/4 *2 pi(k/h)^2 h = 1/2 r^2 h
anonymous
  • anonymous
I dont understand. Why are you guys saying r = k/h, but its h = k/r, "height varies inversely with radius". Does it matter which you put it as?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Looking for something else?

Not the answer you are looking for? Search for more explanations.