HELP ME WITH DEFINITE INTEGRALS, AND THE FUNDAMENTAL THEOREMS OF CALCULUS PLEASE!!

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

HELP ME WITH DEFINITE INTEGRALS, AND THE FUNDAMENTAL THEOREMS OF CALCULUS PLEASE!!

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

IF g(x) = \[\int\limits_{1}^{2lnx} e^t/\sqrt{1+e^(2t)} dt, \] find g'(x)
should be e^(2t)
take the derivative using the chain rule. basically replace t by \[2\ln(x)\] in the integrand, and then multiply by \[\frac{2}{x}\] the derivative of \[2\ln(x)\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

what would be the final answer to this question? just to see if i got it correct. i got 4...?
wrong question. i got 2x/(1+x^2)
\[\frac{e^{2\ln(x)}}{\sqrt{1+e^{4\ln(x)}}}\times \frac{2}{x}\]cleans up a great deal
\[\frac{x^2}{\sqrt{1+x^4}}\times \frac{2}{x}\]
i got that but you would multiply the 2 terms together?
would you*
if \[f(x)=\int\limits_{4/x}^{16} (3\div(4+t^3))dt\], find f'(x)

Not the answer you are looking for?

Search for more explanations.

Ask your own question