At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga.
Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus.
Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your **free** account and access **expert** answers to this and **thousands** of other questions.

See more answers at brainly.com

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your **free** account and access **expert** answers to this and **thousands** of other questions

so step one (as usual in calc) find dy/dx

so dy/dx = (3)(1/2(x^2+6)^-1/2(2x)

or 6x/2(x^2+6)

or 3x/x^2+6

I hadn't tried yet, but that's not what I'm getting...

oh

i did the chain rule for sqrt{x^2+6}

oh so would it be 3x/sqrt{x^2+6}

that's closer^

oh would the 3x be part of sqrt{x^2+6} in the beginning

would i have to use the chain rule for (3xsqrt{x^2+6}) or just sqrt{x^2+6}

product then chain rule
(3x)'(sqrt(x^2+6)+3x(sqrt(x^2+6))'
^^^^^^^^
chain rule here

simplify the obvious stuff
then factor out (x^2+6)^(-1/2) with finess

dy/dx= 3sqrt{x^2+6}+6x^2/2sqrt{x^2+6}

so you should keep going and simplify if you can

dy/dx= 3sqrt{x^2+6}+3x^2/sqrt{x^2+6}

you can factor out 3(x^2+6)^(-1/2) if you want to do it to look nice

hmm how?

okay thank you so much! have a great dinner :) thank you.