STATISTICS

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

1. A physician wanted to estimate the mean length of time that a patient had to wait to see him after arriving at the office. A random sample of 36 patients showed a mean waiting time of 23.4 minutes and a standard deviation of 7.2 minutes. Find a 96% confidence interval for .
sd/sqrt(n) sounds familiar
\[z=\frac{x-mean}{sd/\sqrt{n}}\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

where z is the value at Za = .02 maybe?
|dw:1327284026014:dw|
i know im missing something :/
we want the interval of Lx to Rx right?
z = 2.06 if i see the table right
\[z=\frac{x-mean}{sd/\sqrt{n}}\] \[z(sd/\sqrt{n})={x-mean}\] \[z(sd/\sqrt{n})+mean={x}\] \[2.06(7.2/\sqrt{36})+23.4={x}\text{ to the right}\] \[-2.06(7.2/\sqrt{36})+23.4={x}\text{ to the left}\]
with any luck that is :) im sure im forgetting something important tho

Not the answer you are looking for?

Search for more explanations.

Ask your own question