anonymous
  • anonymous
let A be a nonsingular matrix. Prove that if B is row-equivalent to A then B is also non singular
Mathematics
chestercat
  • chestercat
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

watchmath
  • watchmath
If B is row equivalent to A then by row operation we can turn B into A. But A is non singular. So by ro operations we can turn A to I. Therefore we can turn B into I by some row operations. Which means that B is non singular as well
anonymous
  • anonymous
Thanks that was awesome lOL

Looking for something else?

Not the answer you are looking for? Search for more explanations.