Let f(x0=x^3+Ax^2+Bx-15 be a function whose graph has a maximum at x=2 and a point of inflection at x=3. Find the values of A and B?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Let f(x0=x^3+Ax^2+Bx-15 be a function whose graph has a maximum at x=2 and a point of inflection at x=3. Find the values of A and B?

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

What is f'(x)?
\[f(x)=x^3+Ax^2+Bx-15\]
sorry i miss read that.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Now find f'(x).
f'(x)=\[3x^2+2Ax+B\]
and then f''(x)
\[f"(x)=6x+2A\]
OKay so how do we find the maxima of a polynomial?
Am I suppose to plug something in?
yes that's right :)
So I plug the two into the original function right? Then plug the 3 into the second derivative?
Do you know what is inflection point and critical points?
Critical values are the zeros of the 1st dervivative and inflection points are the zeros of the 2nd derivative?
Yes for the first but for the second that is only necessary condition but not sufficient condition.
One also needs the lowest-order non-zero derivative to be of odd order (third, fifth, etc.). If the lowest-order non-zero derivative is of even order, the point is not a point of inflection.
So what do I need to do? I'm confused now
If I haven't made any error then \( A=-9 \) and you can find B accordingly :)
Ignore my second last comment if it confuses you. Plug in x=3 in f''(x)=0 and then x=2 in f'(x)=0
aha! I understand thanks!! :)
Glad to help :)
okay last one please?
New thread.
\[Let f(x)=5^1/3+x^2.For what values of x does the instantaneous rate of chnage equal when the rate of change is 3.119?\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question