At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga.
Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus.
Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your **free** account and access **expert** answers to this and **thousands** of other questions.

See more answers at brainly.com

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your **free** account and access **expert** answers to this and **thousands** of other questions

wtf is \(f\circ g(x)\)? is \(\circ\) multiplication?

No, it's for composite function.
\[f \circ g(x) = f\left( g(x)\right)\]

oh ok i know that one but never seen it expressed with \(\circ\)

i am confused right away because it is not true that
\[f\circ g = g\circ g\]

\[(x^2+2x)^3=0\implies x^2+2x=0\implies x =0 \text{ or } x=-1\]

yes i see the answer, the third one from alex becker.
it is crap, ignore it

I can't see alex becker's answer ?!

He deleted it probably.

But I have posted it on the first post in this thread. You can read it.

Aha, he probably realized.