moongazer
  • moongazer
Teach me in solving this inequality.
Mathematics
chestercat
  • chestercat
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

moongazer
  • moongazer
|2x−11|−2>4x+7
moongazer
  • moongazer
I know how to solve equations. But I just don't know how to solve if it has absolute value sign. Teach me please. :)
anonymous
  • anonymous
x < 1/3

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

moongazer
  • moongazer
how?
moongazer
  • moongazer
Teach me please and give me another example after teaching it. so that I can practice. and you will going to check it if I am right.
anonymous
  • anonymous
To remove the modulus sign we write \[|2x -11|\] as \[\sqrt{2x - 11}^2\]
moongazer
  • moongazer
Why is that?
vishal_kothari
  • vishal_kothari
http://www.mathmotivation.com/lectures/Inequalities.pdf
anonymous
  • anonymous
To remove any modulus sign write \[\left| ax + b \right| = (\sqrt{ax + b})^2\]
moongazer
  • moongazer
Could you solve it step by step? and what is the reason behind To remove any modulus sign write
moongazer
  • moongazer
\[\left| ax + b \right| = (\sqrt{ax + b})^2\]
hoblos
  • hoblos
|2x−11|−2>4x+7 |2x−11| > 4x +9 then 2x-11 > 4x +9 OR 2x-11 < -(4x+9) -2x > 20 2x -11 < -4x -9 x<-10 6x < 2 x<1/3
moongazer
  • moongazer
please explain
hoblos
  • hoblos
rules: if |x| < a then -aa then x>a OR x<-a
hoblos
  • hoblos
you apply the second rule here
moongazer
  • moongazer
Thanks!
moongazer
  • moongazer
What if it is "="
hoblos
  • hoblos
if |x| = a then x=a OR x=-a

Looking for something else?

Not the answer you are looking for? Search for more explanations.