anonymous
  • anonymous
Prove that if m and n are positive integers: 1≤k≤n, then \[\sum_{i=0}^{k}(n choose i)(mchoosek-i)=(m+n choose k)\]
Mathematics
katieb
  • katieb
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
i don't know how to write those notation with ("n" the top and "i"under it)
anonymous
  • anonymous
can you draw the equation instead?
anonymous
  • anonymous
I am going to attach it.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Hope you are able to see it
1 Attachment
anonymous
  • anonymous
Do you know what combinatorial proofs are?

Looking for something else?

Not the answer you are looking for? Search for more explanations.