anonymous
  • anonymous
can someone please explain the chain rule in derivatives?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
amistre64
  • amistre64
when a function relies on another function we have to account for it
amistre64
  • amistre64
the cahin rule is just saying that the outer function depends on the rate of change of its component function(s)
razor99
  • razor99
akshay could u help me

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

amistre64
  • amistre64
\[f(g(h(x))):f.depends.on.g.which.depends.on.h.which .deoends.on.x\]
amistre64
  • amistre64
f depends on g which depends on h which depends on x
amistre64
  • amistre64
\[\frac{df}{dx}=\frac{df}{dg}\frac{dg}{dh}\frac{dh}{dx}\]
Akshay_Budhkar
  • Akshay_Budhkar
@razor how can i help you?
anonymous
  • anonymous
that's so confusing.. is it possible to get an example please?
razor99
  • razor99
http://en.wikipedia.org/wiki/Chain_rule
razor99
  • razor99
this migt help u bro
amistre64
  • amistre64
if your one a plane thats flying thru the air; and you walk from the back to the front; how fast are you going? well, that all depends on how you compute your speed; and the rate of change depends on not only your speed but the planes speed so we account for both. the chain rule is doing the same thing forrates of change of functions
amistre64
  • amistre64
sqrt(sin^2(x)-3) 1/2sqrt(sin^2(x)-3) depends on: ()^2 - 3 2(sin(x)) depends on: sin(x) cos(x) depends on x \[D_x[\sqrt{sin^2(x)-3}\ ]=\frac{1}{2\sqrt{sin^2(x)-3}}*2(sin(x))*cos(x)\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.