anonymous
  • anonymous
limit of x-> 1+ { x/(x-1) - 1/lnx} Anyone know how to solve this? what i did is making the denominator the same so i can use the L'hopital rule, but then when i use it i get 1/0 = ...
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
\[\lim_{x \rightarrow 1+}\left( (x/x-1) -(1/lnx)\right)\]
myininaya
  • myininaya
\[\lim_{x \rightarrow 1^+} \frac{\ln(x) \cdot x-(x-1)}{\ln(x) \cdot (x-1)}\] \[\lim_{x \rightarrow 1^+} \frac{\frac{1}{x} \cdot x+\ln(x) \cdot 1-(1-0)}{\frac{1}{x}(x-1)+\ln(x)(1-0)}\] i applied l'hospital there \[\lim_{x \rightarrow 1^+}\frac{1+\ln(x)-1}{1-\frac{1}{x}+\ln(x)}\] \[\lim_{x \rightarrow 1^+}\frac{\ln(x)}{1-\frac{1}{x}+\ln(x)}\] we still have 0/0 so we can still use l'hospital \[\lim_{x \rightarrow 1^+}\frac{\frac{1}{x}}{0-\frac{-1}{x^2}+\frac{1}{x}}\] \[\lim_{x \rightarrow 1^+}\frac{\frac{1}{x}}{\frac{1}{x^2}+\frac{1}{x}} \] Now you can plug in 1! :)
myininaya
  • myininaya
\[\frac{\frac{1}{1}}{\frac{1}{1^2}+\frac{1}{1}}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

myininaya
  • myininaya
\[\frac{1}{1+1}=\frac{1}{2}\]
anonymous
  • anonymous
hmm, seems correct, i'll try and caculate again, thanks :) i'll let you know if somethings up
anonymous
  • anonymous
it is correct :D made a few mistakes with the chain rule, learned a lot from you
myininaya
  • myininaya
:)

Looking for something else?

Not the answer you are looking for? Search for more explanations.