anonymous
  • anonymous
Calculus Help: Show that ln(y)=arctan(x) is a solution to the differential equation (1+x^2)y"+(2x-1)y'=0 I'm totally lost need help!
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
mathmate
  • mathmate
From ln(y)=arcxtan(x), raise to power of e e^(ln(y))=e^(arctan(x)) y=e^arctan(x) now differentiate y to get y', and differentiate twice to get y". Substitute in the given equation's LHS to show that after simplification, the LHS = 0 (for any value of x).
mathmate
  • mathmate
Hint: you will need the chain rule to do the differentiations.
anonymous
  • anonymous
Thank you so much mathmate! you're a lifesaver :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

mathmate
  • mathmate
You're welcome! :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.