anonymous
  • anonymous
grain silos can be described as a hemisphere sitting atop a cylinder. The interior volume V of the silo can be modeled by V=2/3πr^3+πr^2h, where h is the height of a cylinder with radius r. For a cylinder 6m tall, what radius would give the silo a volume that is numerically equal to 24π times the radius?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
campbell_st
  • campbell_st
this is always fun... \[24\pi r = 2/3 \pi r^3 + \pi r^2 \times6\] divide by pi Simplifying \[24 r = 2/3 r^3 + 6r^2\] \[36r = r^3 + 9r^2\] divide by r \[r^2 + 9r - 36 = 0\] solve the quadratic... and remember only the the positive r as length can only be positive
anonymous
  • anonymous
|dw:1327395622906:dw|
anonymous
  • anonymous
|dw:1327395734101:dw|

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
r=3
anonymous
  • anonymous
\[\frac12*\frac43*\pi*r^3+\pi*r^2*h=24*\pi*2*r\]
anonymous
  • anonymous
thank you very much!

Looking for something else?

Not the answer you are looking for? Search for more explanations.