anonymous
  • anonymous
is sin(sin^-1x)=sin-1(sinx) an identical? why or why not?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
JamesJ
  • JamesJ
The issue is domains. The domain of the function on the right is the closed interval [-1,1] But the domain of the function on the left is all the real numbers. For numbers which lie in both of these domains, both functions are the identity function. That is \[ \sin(\arcsin x) = \arcsin(\sin x) = x \]
anonymous
  • anonymous
so not identical
JamesJ
  • JamesJ
No. Technically, the definition of a function includes its domain. Hence two functions, f and g, are identical if - both functions have exactly equal domain, call it \( D \) - for every \( x \in D \), \( f(x) = g(x) \) For this pair of functions the second condition is met but not the first.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

JamesJ
  • JamesJ
Questions like this are a favorite on first-year calculus exams.

Looking for something else?

Not the answer you are looking for? Search for more explanations.