anonymous
  • anonymous
let \(a,b,c\in\mathbb{Z}\), \(\gcd(a,b)=1\), and \(c|(a+b)\). how can i show that \(\gcd(c,a)=\gcd(c,b)=1\)?\[\]i need some pointers.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
Its very easy..... You need to show that : \[ (x_{0},y_{0}) \in \mathbb{Z} c x_{1} + a y_{1} = c x_{2} + b y_{2} = 1\]
anonymous
  • anonymous
We will proceed as follows : Given: c divides (a + b) therefore for some integers y1 and y2 c divides ay1 + by2 .........(1) i.e. ay1 + by2 = ck for some integer k. Now k being an integer we can write it as a difference of two more integers, say k = x2 - x1 . Thus we now have : ay1 + by2 = c(x2 - x1) But (1) is nothing but 1 as (a,b) = 1. Therefore, ay1 + by2 = c (x2 - x1 ) = 1 or, ay1 + cx1 = cx2 + by2 = 1. QED
anonymous
  • anonymous
that makes perfect sense. thank you very much

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Welcome.

Looking for something else?

Not the answer you are looking for? Search for more explanations.