anonymous
  • anonymous
A diagram showing a trapezium ABCD in which AD is paralel to BC and AB is perpendicular to BC and AD. The coordinates of A, B, C are (-2,5), (3,9),(7,4) respectively. AD cuts the x-axis at E. Given further that AE:ED is 2:3 and AE=BC, find the coordinates of D.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
dumbcow
  • dumbcow
D = (8,-7.5) slope of AB is 4/5, therefore the perpendicular slope of AD is -5/4 using point A (-2,5) the line connecting A to D: y = -5/4x + 5/2 the x-intercept can be found by plugging in 0 for y x = 2, therefore point E =(2,0) AE =BC = sqrt(41) using the given ratio: sqrt(41)/ED = 2/3 --> ED = 3sqrt(41)/2 Use the distance formula to find point D (x,y) sqrt[(x-2)^2 +y^2] = 3sqrt(41)/2 substitute in for y sqrt[(x-2)^2 +(-5/4x + 5/2)^2] = 3sqrt(41)/2 (x-2)^2 +(-5/4x + 5/2)^2 = 92.25 expand and simplify --> x^2 -4x -32 = 0 (x-8)(x+4) = 0 x = 8, x can't be -4 because of the direction of line AD plug it into equation of line to find y y = -5/4(8) +5/2 = -7.5

Looking for something else?

Not the answer you are looking for? Search for more explanations.