• anonymous
A uniform rigid beam AB has mass 20 kg and is 4m long. It rests on the fulcrum F and FB is 1 m. A 5 kg mass hangs from A and a vertical wire attached to the beam midway between F and B prevents the beam from rotating. Calculate the tension in the wire in Newtons.
  • Stacey Warren - Expert
Hey! We 've verified this expert answer for you, click below to unlock the details :)
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
  • katieb
I got my questions answered at in under 10 minutes. Go to now for free help!
  • anonymous
Take the balance of torque around F, letting clockwise be the positive direction and A be to the left of F. First, we should draw a free body diagram. |dw:1327513578224:dw| Let's note some lengths. \[\left(\begin{matrix}L_{AF} = 1 \\ L_{AC} = 0.5 \\ L_{FB} = 3 \\ L_{FD} = 1.5\end{matrix}\right)\]Second, we need to find the mass distribution of the beam on a per unit length basis. \[w = {m \over L} = {20 \over 4} = 5 ~\left[ \rm kg \over m \right]\]Now, we need to find the center of gravity of the portion of the beam to the left and right of the fulcrum. \[CG_{AF} = 0.5 [{\rm m}]\]\[CG_{FB} = 1.5 ~ [\rm m]\]Now, let's find the resultant force of the beam's mass distribution, which acts at the center of gravity. \[R_{AF} = L_{AF} \cdot w \cdot g \approx 50 ~ [\rm N]\]\[R_{FB} = L_{FB} \cdot w \cdot g \approx 150 ~[\rm N]\]Now, we can balance the torque. \[\sum \tau_F = 0 = -(m_A \cdot g \cdot L_{AF}) - (R_{AF} \cdot CG_{AF}) + (R_{FB} \cdot CG_{FB}) - \left(T \cdot {L_{FB} \over 2} \right)\]This, of course, assumes the tension in the wire, \(T\) acts upwards. If we get a negative value for \(T\), we know it acts downwards.

Looking for something else?

Not the answer you are looking for? Search for more explanations.