anonymous
  • anonymous
2. Consider the differential equation dy dt = t y . (a) Show by substitution into the equation that y = t is a solution, satisfying the initial condition y(1) = 1. Over what range of t is this solution valid? (b) Find the solution satisfying the intitial condition y(0) = 2.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
im not sure what the equation is is it dy/dt = ty ?
anonymous
  • anonymous
t-y
anonymous
  • anonymous
sorry t/y

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

ash2326
  • ash2326
dy/dt =t/y ydy= tdt integrate both sides y^2/2=t^2/2+c y^2=t^2+C given y(1)=1 1=1+c so c=0 y^2=t^2 y=t this is valid for t>=0 2nd part y(0)=2 2=0+c so y^2=t^2+2

Looking for something else?

Not the answer you are looking for? Search for more explanations.