anonymous
  • anonymous
Solve the differential equation dy dt = t(y2 − 4) by separation of variables. The integrals involved may require the use of partial fractions.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
do you mean dy/dt=t(y^2-4)?? sorry i cant understand
anonymous
  • anonymous
ya sorry
anonymous
  • anonymous
\[\frac{dy}{dt}=t(y^2-4) \implies \frac{dy}{y^2-4}=tdt \implies \int\limits\frac{dy}{y^2-4}=\int\limits tdt.\] Evaluate the integrals and don't forget to add the constant.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
the end result would be \[y=\pm \sqrt{(Ae^t^2)+4}\]
anonymous
  • anonymous
?
anonymous
  • anonymous
When evaluating the integrals you will should get \[\frac{1}{4}\ln {2-y \over 2+y}=\frac{1}{2}t^2+c \implies \ln {2-y \over 2+y}=2t^2+c \implies {2-y \over 2+y}=ke^{2t^2}\] Solve for y now, if you want.
anonymous
  • anonymous
It can also be written as \[\frac{2-y}{2+y}=Ae^{t^2}\] where \(A=ke^2\).
anonymous
  • anonymous
i dont understand how you get this part 1/4 ln(2−y/2+y)
anonymous
  • anonymous
By evaluating the Left-hand-side integral (\(\large \int {dy \over y^2-4}\)), where you need to use partial fractions.\[\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.