find the following indefinite integral using u-substitution to solve... HELP

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

find the following indefinite integral using u-substitution to solve... HELP

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

\[\int\limits_{}^{}6x \sqrt{x^2-25}dx\]
I know I let u=x^2-25 which makes du=2xdx
i am stuck at a particular step.. i will show you what i have so far

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

hint: try u=sqrt(x^2-25) or try differentiating sqrt(x^2-25) and see what you get.
ok then dx = du/2x \[\int\limits_{}^{}\frac{6x \sqrt{u}}{2x} du =3 \int\limits_{}^{}\sqrt{u} du\]
\[\int\limits_{}^{}\sqrt{x^2-25}\times6xdx = 3\int\limits_{}^{}\sqrt{x^2-25}\times2xdx = 3\int\limits_{}^{}\sqrt{u}du\]
i'm lost after that
\[\sqrt{u} = u^{1/2}\] use the power rule
\[\large \int\limits_{}^{}x^{n} = \frac{x^{n+1}}{n+1}\]
yeah so i would fill fill in x^2 -25 now for that step or no?
no leave it in terms of u until you have finished integrating, then the last step will be to substitute the x^2 -25 back in for u
ok so i got 2u^(3/2)+c ... is that correct?
yep
ok so then substitute in now? giving me.. 2(x^2-25)^(3/2) + c ..?
yes you could also write it as ...2sqrt(x^2-25)(x^2 -25) + c
ok so then my final answer is \[2x^2-50\sqrt{x^2-25}+c\]..? or just leave it \[2(x^2-25)\sqrt{x^2-25}+c\]?
i would just leave it in factored form, but both are correct
thank you so much!

Not the answer you are looking for?

Search for more explanations.

Ask your own question