Derive the force for the following intervals U(x) = 1, -∞ < x < -π |x|, -π ≤ x ≤ π sin (x), x > π

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Derive the force for the following intervals U(x) = 1, -∞ < x < -π |x|, -π ≤ x ≤ π sin (x), x > π

Physics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

\[ F = \frac{dU}{dx} \hat{x} \] So just calculate and notice there will be points where the force is not defined because the derivative is not defined. (Or if you know Dirac delta functions, should be written in terms of them.)
Hence, for instance, for x < pi, the force F is the zero vector because the derivative of the potential 1 is zero.
And I should have included a minus sign. \[ F = - \frac{dU}{dx} \hat{x} \]

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Making sense?
Sorry, I don't get it :|
What is the function U(x)? Not its mathematical definition. What is its physical interpretation?

Not the answer you are looking for?

Search for more explanations.

Ask your own question