Find ( f -1 )'( a )

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Find ( f -1 )'( a )

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

1 Attachment
first off...by inspection \[f^{-1}(2)=0\]
Thats not an option
1 Attachment

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

then use \[\left[f^{-1}\right]'(a)=\frac{1}{f'\left( f^{-1}(a) \right)}\]
what I pointed out was just the first step in the problem
Ahh, see, these are the option I am given
ok...use the two posts of mine above and you should get the answer.
So if I did this right, 4/pi?
no
only 3 options to go :)
lol, thats not what I'm going for
that won't help much come actual class time
\[f'(x)=2x+\sec^2(\pi x/2)\pi/2\] \[\frac{1}{f'(f^{-1}(2))}=\frac{1}{f'(0)}=\frac{1}{\pi/2}=\frac{2}{\pi}\]
Oh I see, you simplified f^-1 and then you got f'
just combined my first two posts in this thread.
yeah, I'm kind of a slow/visual learner... but I'll get it
good
No problem

Not the answer you are looking for?

Search for more explanations.

Ask your own question