anonymous
  • anonymous
Find ( f -1 )'( a )
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
1 Attachment
Zarkon
  • Zarkon
first off...by inspection \[f^{-1}(2)=0\]
anonymous
  • anonymous
Thats not an option
1 Attachment

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Zarkon
  • Zarkon
then use \[\left[f^{-1}\right]'(a)=\frac{1}{f'\left( f^{-1}(a) \right)}\]
Zarkon
  • Zarkon
what I pointed out was just the first step in the problem
anonymous
  • anonymous
Ahh, see, these are the option I am given
Zarkon
  • Zarkon
ok...use the two posts of mine above and you should get the answer.
anonymous
  • anonymous
So if I did this right, 4/pi?
Zarkon
  • Zarkon
no
Zarkon
  • Zarkon
only 3 options to go :)
anonymous
  • anonymous
lol, thats not what I'm going for
anonymous
  • anonymous
that won't help much come actual class time
Zarkon
  • Zarkon
\[f'(x)=2x+\sec^2(\pi x/2)\pi/2\] \[\frac{1}{f'(f^{-1}(2))}=\frac{1}{f'(0)}=\frac{1}{\pi/2}=\frac{2}{\pi}\]
anonymous
  • anonymous
Oh I see, you simplified f^-1 and then you got f'
Zarkon
  • Zarkon
just combined my first two posts in this thread.
anonymous
  • anonymous
yeah, I'm kind of a slow/visual learner... but I'll get it
Zarkon
  • Zarkon
good
anonymous
  • anonymous
Zarkon
  • Zarkon
No problem

Looking for something else?

Not the answer you are looking for? Search for more explanations.