anonymous
  • anonymous
How can i determe the value of k such that the system below does not have a unique solution:
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
|dw:1327597002487:dw|
amistre64
  • amistre64
matrix it up
anonymous
  • anonymous
okay i did that, but now i am stuck as to how to determine it

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

amistre64
  • amistre64
im gonna wolf this for simplicity and see if it helps {1,1,k,3},{1,k,1,2},{k,1,1,1}
anonymous
  • anonymous
right, thats what i have, i have no idea how to proceed
amistre64
  • amistre64
http://www.wolframalpha.com/input/?i=rref+%7B1%2C1%2Ck%2C3%7D%2C%7B1%2Ck%2C1%2C2%7D%2C%7Bk%2C1%2C1%2C1%7D
amistre64
  • amistre64
now does it matter if its no or infinite solutions? just a s long as its not unique
anonymous
  • anonymous
it just says, "does not have a unique solution"
amistre64
  • amistre64
from the divisions i see that k not= 1 or -2
anonymous
  • anonymous
how did they get those fractions
amistre64
  • amistre64
they row reduced it
amistre64
  • amistre64
rref form is the row reduced form using elementary matrix operations of row addition and such
amistre64
  • amistre64
click on "show steps"
amistre64
  • amistre64
11k 3 *-1 add to r2 -1-1 -k -3 1 k 1 2 ----------- 0 k-1 1-k -1 11k 3 *-k add to r3 -k -k -2k -3k k 1 1 1 ----------------- 0 1-k 1-2k 1-3k 1 1 k 3 0 k-1 1-k -1 0 1-k 1-2k 1-3k and so forth till you get a diagonal of 1s

Looking for something else?

Not the answer you are looking for? Search for more explanations.