Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing

Cameronmx9

  • 4 years ago

Find the volume of the solid generated by revolving the region bounded by the curves y =sqrt(x) and y = x - 2 and the line x = 0 around the y-axis

  • This Question is Closed
  1. Hunus
    • 4 years ago
    Best Response
    You've already chosen the best response.
    Medals 1

    |dw:1327635566351:dw| The equation needs to be with respect to y The radius of the outer part of the solid of revolution is (y+2) and the radius of the inner is y^2 So the area of each cross section is \[\int\limits_{-1}^{2}(\pi(y+2)^2 - \pi(y^2)^2)dy=\pi \int\limits_{-1}^{2}((y^2+4y+4) - (y^4))dy\] \[\pi \int\limits_{-1}^{2}((y^2+4y+4) - y^4)dy=\pi \left[ \frac{y^3}{3} + 2y^2 + 4y\right]_{-1}^{2}\] \[\pi \left[ \frac{y^3}{3} + 2y^2 + 4y\right]_{-1}^{2} = \pi \left[( \frac{8}{3} + 8 + 8)-(-\frac{1}{3}+2-4)\right]\] \[\pi \left[( \frac{8}{3} + 8 + 8)-(-\frac{1}{3}+2-4)\right]=21\pi\]

  2. Not the answer you are looking for?
    Search for more explanations.

    • Attachments:

Ask your own question

Sign Up
Find more explanations on OpenStudy
Privacy Policy