anonymous
  • anonymous
Optimization. At 12 noon a ship going due east at 12 knots crosses 10 nautical miles ahead of a second ship going due north at 16 knots. a) If s is the number of nautical miles separating the ships, express s in terms of t (the number of hours after 12 noon). b) When are the ships closest and what is the least distance between them
Calculus1
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
the distance would be sqrt( (12t)^2 + (10-16t)^2 ) nautical miles differentiate and you would get t = 17/16 hours after 12 or 1 hour 3 minutes 45 seconds after 12 or 1:03:45 P.M.

Looking for something else?

Not the answer you are looking for? Search for more explanations.