anonymous
  • anonymous
I need to show the following limit exists. lim(x,y) -> (0,0) of xy(x-y)/(x^2 + y^2). I can probably plug in for y=0 and x=0, but how can I show the limit exists for all lines?
MIT 18.02 Multivariable Calculus, Fall 2007
jamiebookeater
  • jamiebookeater
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
Try using polar coordinates: \[x = r\cos(\theta)\]\[y = r\sin(\theta)\] Now your limit becomes: \[\lim_{(x,y) \rightarrow (0,0)} [x \times y \times (x-y)] \div [x^{2} + y^{2}] = \] \[\lim_{r \rightarrow 0} [r \cos(\theta)\times r \sin(\theta)\times (r \cos(\theta) - r \sin(\theta))]\div[r^2 \cos^2(\theta) + r^2 \sin^2(\theta)] \] \[\lim_{r \rightarrow 0} [r^2\cos(\theta)\sin(\theta)\times r(\cos(\theta) - \sin(\theta))]\div r^2\]Now, observe that it's a limit of "r" going to 0, so r can never be 0, therefore we can divide by r² the top and the bottom our ratio:\[\lim_{r \rightarrow 0} r \times \cos(\theta)\sin(\theta)\times(\cos(\theta) -\sin(\theta)) = \]\[\cos(\theta)\sin(\theta)\times(\cos(\theta) -\sin(\theta))\lim_{r \rightarrow 0}r = 0\]Meaning that, independently of the angle (the theta) you are approaching the origin, it will always go to zero. Hope it helped!

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Looking for something else?

Not the answer you are looking for? Search for more explanations.