One is looking to invest 15 thousand dollars among 5 opportunities. Each investment should be an integral in units of 500 dollars. A portfolio corresponds to an investment policy. For example, (5,6,3,6,10) is a portfolio that invests 5 units in the first opportunity, 6 units in the second, 3 units in the third, 6 units in the fourth and 10 units in the fifth opportunity. (0,14,8,8,0) is another portfolio in which no investment is made in the first and fifth opportunities. The total number of portfolios that invests at least one unit in each of the first three opportunities is:

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

One is looking to invest 15 thousand dollars among 5 opportunities. Each investment should be an integral in units of 500 dollars. A portfolio corresponds to an investment policy. For example, (5,6,3,6,10) is a portfolio that invests 5 units in the first opportunity, 6 units in the second, 3 units in the third, 6 units in the fourth and 10 units in the fifth opportunity. (0,14,8,8,0) is another portfolio in which no investment is made in the first and fifth opportunities. The total number of portfolios that invests at least one unit in each of the first three opportunities is:

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

theres 3 questions i posted, all similar
its like how many ways to distribute 30 sweets between 5 kids so that 3 of them get atleast 1 ...
yeah how to do that

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

the way to do this is to say distribute 3 sweets initially to those 3 kids .. so now we are left with 27 sweets .. so basically you have to find number of ways to distribute 27 sweets among 5 kids ... this would be 27c5
ah ok, ive gotta restart my computer, could you take a look at the rest?
hey shaan why is it 27c5? how would 27c5 give the number of ways it can be distributed
sorry in haste I miscalculated .. .look u need to distribute 27 sweets among 5 kids. Imagine you have to arrange 27 women and 5 men. How many ways can you do it ?? 32!/(5!*27!) ... now say I make a condition that the last person would be a man then how many ways --> 31!/(27!*4!) .. Now say I say that any women which comes to the left of a man is given to him then I am through right??

Not the answer you are looking for?

Search for more explanations.

Ask your own question