EscherichiaRinku
  • EscherichiaRinku
I just calculated the Fourier series of x^2-(pi^2)/2 and noticed, that it's no different from the Fourier series of x^2, except for the a_0. Is that just a coincidence, or can i simply use the Fourier series of the known function and then simply calculate the according a_0?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
JamesJ
  • JamesJ
a_0 is the only constant term in a Fourier series. Hence of you have the Fourier series of f(x), you can calculate immediately the Fourier series of g(x) = f(x) + c by modifying the a_0 term of the Fourier series of f(x)
EscherichiaRinku
  • EscherichiaRinku
That will be pretty useful at the exam, thank you :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.