anonymous
  • anonymous
THE VELOCITY of a particle is
Physics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
|dw:1327679298439:dw| the component of velocity v parallel to the vector in the form of a is
anonymous
  • anonymous
|dw:1327679486945:dw|
ash2326
  • ash2326
unit vector of (i+j+k)= \((i+j+k)/\sqrt{3}\) angle between velocity vector and the second vector let the second vector be x we know that dot product of two vectors a and b is a.b=|a||b|cos theta so v.x=|v||x|cos (theta) (6i+2j-2k)(i+j+k)= \(\sqrt{44}* \sqrt(3) \cos \theta\) 6/\(\sqrt {132}=\cos \theta \) magnitude of velocity vector in the direction of x let the new vector be y |y|=|v| cos theta |y|= \( \sqrt{44} *6/ \sqrt{132}\) |y|=6/ \(\sqrt 3\) vector y= |y| x/|x| y= 6/ \(\sqrt 3\) *(i+j+k)/\(\sqrt 3\) y=2i+2j+2k

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Shayaan_Mustafa
  • Shayaan_Mustafa
nice work ash2326.
anonymous
  • anonymous
hey ash in this question we have to find a component of v parallel to a vector
ash2326
  • ash2326
|dw:1327683618621:dw|yeah , i'll show you how i've done
ash2326
  • ash2326
|dw:1327683675640:dw|
ash2326
  • ash2326
y=|y|* unit vector of x unit vector of x= x/|x|

Looking for something else?

Not the answer you are looking for? Search for more explanations.