anonymous
  • anonymous
if g(x) = 2x squared - 8, find g to the -1 power(x)
Algebra
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
sorry i couldnt figure out how to the squared and such lol :/
asnaseer
  • asnaseer
Assuming your question is given:\[g(x)=2x^2-8\]find \(g^{-1}(x)\). g(x) gives you a value for g for a given value of x. \(g^{-1}(x)\) gives you the inverse of this - i.e. given a value for g, what value of x produced this? so you need to get an expression for x in terms of g(x). the steps are as follows:\[g(x)=2x^2-8\]\[g(x)+8=2x^2\]therefore:\[2x^2=g(x)+8\]\[x^2=\frac{g(x)+8}{2}\]\[x=\pm\sqrt{\frac{g(x)+8}{2}}\]this is the inverse function and we usually replace g(x) on the right-hand-side with x, and replace the x on the left-hand-side with \(g^{-1}(x)\) to get:\[g^{-1}(x)=\pm\sqrt{\frac{x+8}{2}}\]you can check if this is correct or not by trying some values. so lets calculate g for x=2:\[g(x)=2x^2-8\]\[g(2)=2*(2)^2-8=2*4-8=8-8=0\]now lets use this value of g to calculate \(g^{-1}\):\[g^{-1}(x)=\pm\sqrt{\frac{x+8}{2}}\]\[g^{-1}(0)=\pm\sqrt{\frac{0+8}{2}}=\pm\sqrt{\frac{8}{2}}=\pm\sqrt{4}=\pm2\]so we can see that g has the value zero for either x=2 or x=-2.

Looking for something else?

Not the answer you are looking for? Search for more explanations.