anonymous
  • anonymous
Can someone help me prove a property of singular matrices?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
1 Attachment
anonymous
  • anonymous
If A and B are matrices, then det(AB) = ?
anonymous
  • anonymous
the det(A)*det(B)

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
So det(A^2) = ?
anonymous
  • anonymous
det(a)^2
anonymous
  • anonymous
it is det(A)*det(A)
anonymous
  • anonymous
Finally, what is det(A^10) ?
anonymous
  • anonymous
det(a)^10
anonymous
  • anonymous
So take the determinant of both sides of your equation.
anonymous
  • anonymous
lol so basically A must equal 0
anonymous
  • anonymous
No, det(A) = 0. Which is the definition of a singular matrix.
anonymous
  • anonymous
lol that is what i meant
anonymous
  • anonymous
Thanks Jemurray
anonymous
  • anonymous
There u go I gave u a medal :D
anonymous
  • anonymous
Thank you :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.