Here's the question you clicked on:
asnaseer
How to align the equals signs on equations of the form: f(2) = 2*(2)^2 + 8 = 2*4 + 8 = 8 + 8 = 16
\[\]To achieve this you need to enclose your equations between \\([\)\\(\)begin{align} and \\(\)end{align}\\(]\). Each equal sign should be preceded with an '&' symbol, and each line should end with a double backslash (i.e. \\). So the sample equation in the question would be written out as: \\([\)\\(\)begin{align} f(2) &= 2*(2)^2 + 8\\ &= 2*4 + 8\\ &= 8 + 8\\ &= 16 \\(\)end{align}\\(]\) This will produce something like this:\[\begin{align} f(2) &= 2*(2)^2 + 8\\ &= 2*4 + 8\\ &= 8 + 8\\ &= 16 \end{align}\]
\[\begin{array} f(2) &= 2*(2)^2 + 8\\ &= 2*4 + 8\\ &= 8 + 8\\ &= 16 \end{array}\] just checking it works with "array" as well
how did they write it?
when asnaseer come back we should tackle him with the question
\begin{array} f(2) &= 2*(2)^2 + 8\\ &= 2*4 + 8\\ &= 8 + 8\\ &= 16 \end{array}
you know you can copy that code
\[\begin{align} f(2) &= 2*(2)^2 + 8\\ &= 2*4 + 8\\ &= 8 + 8\\ &= 16 \end{align}\]
no but i want it in the equation editor
you can do it in the equation editor
\[\[\begin{align} f(2) &= 2*(2)^2 + 8\\ &= 2*4 + 8\\ &= 8 + 8\\ &= 16 \end{align}\]\]
\[\begin{array} new line \\ new line \\ new line \end{array}\]
i did that in equation editor
i did a new line you have to do \begin{array} \\ newline\\ newline \end{array}
\[\newline \newline\]
|dw:1327727286914:dw|
\[\begin{array} &akshay & myin \end{array} \]
what am i supposed to type in the equation editor?
\[\begin{array} \\akshay \\ myin \end{array}\]
\[\begin {array} \\akshay \\myin \end {array}\]
\[\begin{array} \\akshay \\ myin \\ :) \end{array} \]
\[\begin{align} Thank &=you\\ &= Its gr8 \\&=\huge {For \cancel { Not }2 \cancel{forget} } \end{align}. \] its so cool ! ^_^
TEST: \[\begin{array} x&=2+3\times 4 \\ &=2+12 \\ &=14 \end{array}\]
Il y a aussi l'environment eqnarray: begin{eqnarray} f(2) &=& 2*(2)^2 - 8\\ &= & 2*4 - 8\\ &=& 8 - 8 \\ &=& 0\end{eqnarray}, displays: \(\begin{eqnarray} f(2) &=& 2*(2)^2 - 8\\ &= & 2*4 - 8\\ &=& 8 - 8 \\ &=& 0\end{eqnarray} \) Which is very similar indeed, but I'm sure there are some small difference that helps perfectionists smile. Here another example: \(\begin{eqnarray} f(2) = 2*(2)^2 - 8\\ = 2*4 - 8\\ = 8 - 8 \\ = 0\end{eqnarray} \) begin{eqnarray} f(2) = 2*(2)^2 - 8\\ = 2*4 - 8\\ = 8 - 8 \\ = 0\end{eqnarray} and Pascal's triangle: \(\begin{eqnarray} &1\\ &1\ 1\\ &1\ 2\ 1 \\ &1\ 3\ 3\ 1 \\ & 1\ 4\ 6\ 4\ 1 \\ &1\ 5\ 10\ 10\ 5\ 1 \end{eqnarray} \) begin{eqnarray} &1\\ &1\ 1\\ &1\ 2\ 1 \\ &1\ 3\ 3\ 1 \\ & 1\ 4\ 6\ 4\ 1 \\ &1\ 5\ 10\ 10\ 5\ 1 \end{eqnarray}