How would I find the sum of the first 31 cubes?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

How would I find the sum of the first 31 cubes?

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

There is a beautiful explanation of this without words here: http://books.google.com/books?id=cyyhZr-SffcC&lpg=PA67&dq=proofs%20without%20words%20sum%20of%20cubes&pg=PA85#v=onepage&q&f=false
I cant look at that and understand it, it means nothing to me.
that's beautiful

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Oh! Epic sauce look what I found! 1 8 27 64 125 7 19 37 61 12 18 24 - Multiples of 6! So something like (6x1 + 6x2 + 6x3 + 6x4...) which is 6(1 + 2 + 3 + 4... + n)! So with my theory the answer should be 6(1 + 2 +... + 31) so 6 x 496 is definitely not the answer :( way too small I think it has something to do with how for the first 5 cubes, i only had 3 multiples of 6, maybe multiply that by n + 2, so 33? That equals 98,208, which is still way too small. The smallest possible answer is 216,225. Help please?
the formula is printed very clearly on mathteacher's link\[\large1^3+2^3+3^3+\dots+n^3=(1+2+3+\dots+n)^2\]
So it would be 496^2?
So say it was the first 31 fourth-powers, it would be 496^3?
But could you help me with my theory that I was trying to establish?
Look at the formula for the sum if the first n integers raise to power 1, 2, and 3 respectively:\[\sum_{i=1}^{n}i=\frac{n(n+1)}{2}\]\[\sum_{i=1}^{n}i^2=\frac{n(n+1)(2n+1)}{6}\]\[\sum_{i=1}^{n}i^3=\frac{n^2(n+1)^2}{4}=(\sum_{i=1}^{n}i)^2\]There is almost a pattern here, but not really. I don't know of any formulas for higher power series, let alone patterns among them all. I'm not sure such patterns are even fully known or understood.
oh look, I just found this! http://www.mathpages.com/home/kmath279/kmath279.htm so I guess there is a pattern after all :D
Okay, I'm not sure what the greek letter means, but I think I get the gist of them. Thanks for your time. Could you help me out with my theory though?
oh, great! I'll take a look at it.
I wish I could generalize this stuff, but I'm not that smart. Looks like somebody was though. Enjoy, I'm reading too.
I can't figure that out. I don't understand what it means. :( Now I'm frustrated...
The greek letter is sigma. It just means add up all the numbers from the bottom to the top part\[\sum_{i=n}^{5}n=1+2+3+4+5\]for instance, or\[\sum_{n=1}^{3}n^2=1^2+2^2+3^2\]and yes, I never said that the pattern would be obvious. Good luck deciphering it.
typo, first series should be\[\sum_{n=1}^{5}n=1+2+3+4+5\]
It's too small for me to read anyways, but thanks for trying.
I couldnt even begin to understand that link.
the sum of square is annoying, but the sum of cubes is actually nicer, since it is just the square of the sum of consecutive natural numbers
yes.
there is a way of deriving each of them from the previous one, but the algebra gets increasingly more painful

Not the answer you are looking for?

Search for more explanations.

Ask your own question