anonymous
  • anonymous
integrate[sec^3x]
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
\[\int\limits_{?}^{?}\sec ^{3}\theta d \theta\]
anonymous
  • anonymous
|dw:1327731874453:dw||dw:1327732061041:dw|
anonymous
  • anonymous
because the reciprocal ratio for sec is 1/cosx

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
so then just bring the power to the front
anonymous
  • anonymous
so
anonymous
  • anonymous
thanks, never thought about that move;
anonymous
  • anonymous
|dw:1327732192064:dw|
anonymous
  • anonymous
also have to know the general power rule wich is
anonymous
  • anonymous
|dw:1327732252138:dw|
anonymous
  • anonymous
im not getting the rule.. explain?
TuringTest
  • TuringTest
no that won't quite work above you are going to integration by parts I think here
anonymous
  • anonymous
it was solved, but idk y he squared the last integral-- and the power rule he stated
TuringTest
  • TuringTest
u=secx du=secxtanx dv=sec^2x u=tanx
TuringTest
  • TuringTest
\[\int \sec^3xdx=\sec x \tan x-\int \sec x\tan^2xdx\]\[=\sec x \tan x-\int \sec x(1-\sec^2x)dx\]\[=\sec x \tan x-\int\sec^3 xdx+\int\sec xdx\]have it from there ?
TuringTest
  • TuringTest
v=tanx above*
anonymous
  • anonymous
yes, got it; thanks, for the integral of secx, you change to 1/cosx, then multiply by cosx/cos right?
TuringTest
  • TuringTest
\[\int\sec xdx=\int\sec x(\frac{\sec x+\tan x}{\sec x+\tan x})=\int\frac{du}{u}\]
anonymous
  • anonymous
i c, kk thanks alot man =)
TuringTest
  • TuringTest
anytime

Looking for something else?

Not the answer you are looking for? Search for more explanations.