anonymous
  • anonymous
find integrate (1/(xsqrt(1+(lnx)^2)),1,e,x)
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
\[\int\limits_{1}^{e}1/(x \sqrt{1+(lnx)^2}) dx\]
myininaya
  • myininaya
\[\int\limits_{1}^{e}\frac{dx}{x \sqrt{1+(\ln(x))^2}}\] \[\text{ Let } a=\ln(x) => da=\frac{dx}{x}\] if x=e then a=ln(e)=1 if x=1 then a=ln(1)=0 So we have \[\int\limits_{0}^{1}\frac{da}{\sqrt{1+a^2}} \]
anonymous
  • anonymous
ln x= t .. then this becomes dt/(sqrt(1+t^2)) .. now put t = tany and you get secydy = ln(secy + tany)

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

myininaya
  • myininaya
\[\text{ Let } a=\tan(\theta) => da=\sec^2(\theta) d \theta\] if a=1 then theta=arctan(1)=pi/4 if a=0 then theta=arctan(0)=0 \[\int\limits_{0}^{\frac{\pi}{4}}\frac{\sec^2(\theta) d \theta}{\sqrt{1+\tan^2(\theta)}}\]
anonymous
  • anonymous
yea thats as far as i got and lost
myininaya
  • myininaya
\[\int\limits_{0}^{\frac{\pi}{4}}\sec(\theta) d \theta \text{ (note :} 1+\tan^2(\theta) =\sec^2(\theta) \text{ )}\]
myininaya
  • myininaya
\[=\ln|\sec(\theta)+\tan(\theta)||_0^\frac{\pi}{4}=\ln|\sec(\frac{\pi}{4})+\tan(\frac{\pi}{4})|-\ln|\sec(0)+\tan(0)|\]
myininaya
  • myininaya
\[=\ln(\frac{1}{\frac{\sqrt{2}}{2}}+\frac{\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2}})-\ln(\frac{1}{1}+\frac{0}{1})\]
myininaya
  • myininaya
\[=\ln(\frac{2}{\sqrt{2}}+1)-\ln(1)=\ln(\frac{2 \sqrt{2}}{2}+1)-0=\ln(\sqrt{2}+1)\]
anonymous
  • anonymous
for the absolute values, how do you get rid of it?
anonymous
  • anonymous
thanks for your help! very clear instruction. i always liked your help =)
myininaya
  • myininaya
the number inside was positive you don't need them anymore
myininaya
  • myininaya
\[\ln|1|=\ln(1)\] You don't need the absolute value since |1|=1

Looking for something else?

Not the answer you are looking for? Search for more explanations.