• anonymous
identify the solutions to the equation when you solve by completing the square
  • Stacey Warren - Expert
Hey! We 've verified this expert answer for you, click below to unlock the details :)
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
  • katieb
I got my questions answered at in under 10 minutes. Go to now for free help!
  • anonymous
  • Rogue
\[x ^{2} - 5x = 24\] For a quadratic equation\[ax ^{2} + bx + c = 0\] When solving by completing the square, you must bring C to the other side first, which is already done for your equation. Next up must add \[\frac {b^{2}}{4}\] to both sides. In your case, \[\frac {b^{2}}{2} = \frac {-5^{2}}{2} = \frac {25}{2}\] Adding that do both sides of the equation, we get\[x ^{2} - 5x + \frac {25}{4} = 24 + \frac {25}{4}\] We see that we can factor this into:\[(x - \frac {5}{2})^{2} = 24 + \frac {25}{4} = \frac {121}{4}\] We can square root both sides to get\[(x-\frac {5}{2}) = \pm \sqrt{\frac {121}{4}}\] Now we just add 5/2 to both sides and we get that\[x = \frac {5}{2} \pm \sqrt{\frac {121}{4}}\] If we simplify that further, we get\[x = \frac {5}{2} \pm \frac {11}{2} = \frac {5 \pm 11}{2}\] The two solutions are then:\[x = \frac {5 + 11}{2} = 8\]\[x = \frac {5 - 11}{2} = -3\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.