anonymous
  • anonymous
George is thinking about a regular polygon. If he takes the number of diagonals in the polygon and adds the number of degrees in an exterior angle, the result is 84. What kind of polygon is George thinking about?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
I've gotten to n(n-3)/2 + 360/n = 84. Then I was unsure what to do but I multiplied both sides by 2n to get rid of denominators and got n^2(n-3) + 720 = 168n which is the same as n^3 - 3n^2 - 168n + 720 = 0 but I can't factor that.
Directrix
  • Directrix
Dodecagon (12 sides). Exterior angle of regular 12-gon is 30 and number of diagonals is 54. See the following link for solutions to Mr. Id's (above) equation. http://www.wolframalpha.com/input/?i=n%5E3+-+3n%5E2+-+168n+%2B+720+%3D+0
anonymous
  • anonymous
How did you do that algebraically though. I mean sure you can guess and check...

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Ah, so my cubic equation was right. How would I factor that though?
Directrix
  • Directrix
Using the rational root theorem, find that 12 is actually a root.
Directrix
  • Directrix
@ Mr. ID --> the other two roots are irrational. No guessing and checking this time. :)
anonymous
  • anonymous
Yes, I was just wondering how you got the 12. Did you factor my equation? If so, how?

Looking for something else?

Not the answer you are looking for? Search for more explanations.