Quantcast

Got Homework?

Connect with other students for help. It's a free community.

  • across
    MIT Grad Student
    Online now
  • laura*
    Helped 1,000 students
    Online now
  • Hero
    College Math Guru
    Online now

Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing

stormangel1991 Group Title

what is the main difference between proper integrals & improper integrals?

  • 2 years ago
  • 2 years ago

  • This Question is Closed
  1. henpen Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    Basically, as far as I gather, improper integrals are those which involve infinities in one of their endpoints (a,b etc.) are +/- infinity (this includes asymptotes (infinite on the y-axis) and when a/b= infinity (infinite on the x-axis)). That's as far as my meagre knowledge stretches, hope it helps.

    • 2 years ago
  2. andijo76 Group Title
    Best Response
    You've already chosen the best response.
    Medals 1

    An integral becomes improper for two reasons: i) Either the upper or lower limit is infinite ii) If a point of discontinuity exists on the interval is being integrated. For example, the following is a improper integral because it's upper bound is infinite: ∫ e^(-x) dx (from x=0 to infinity). This next one is improper due to the discontinuity at x = 0: ∫ 1/√x dx (from x=0 to 1). Of course, there are integrals that are improper for both reasons (having a discontinuity on the integration interval AND having an un-bounded end-point).

    • 2 years ago
  3. stormangel1991 Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    so proper inegrals are those without intervals?

    • 2 years ago
    • Attachments:

See more questions >>>

Your question is ready. Sign up for free to start getting answers.

spraguer (Moderator)
5 → View Detailed Profile

is replying to Can someone tell me what button the professor is hitting...

23

  • Teamwork 19 Teammate
  • Problem Solving 19 Hero
  • You have blocked this person.
  • ✔ You're a fan Checking fan status...

Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

This is the testimonial you wrote.
You haven't written a testimonial for Owlfred.