anonymous
  • anonymous
A charge of +3q is placed at the center of an unchanged conducting shell. What will be the charges on the inner and outer surfaces of the shell, respectively? A. -3q, +3q B. -3q, +6q C. -3q, -3q D. -q, +q
Physics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
i think a is correct
anonymous
  • anonymous
how sure are u?
anonymous
  • anonymous
from conservation charge principle

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
excellent...ty
JamesJ
  • JamesJ
More intuitively perhaps, a charge brought near a conductor induces in the conductor a charge of opposite sign closest to the charge. So the inside of the sphere should have an induced charge which is negative, because +3q is positive. Now, the exterior must be the opposite of whatever is in the interior. Hence its sign is +.
JamesJ
  • JamesJ
Therefore option A or D is correct. Now the only question is whether you think that induced charge will have the same magnitude or not?
anonymous
  • anonymous
same hence shell is uncharged
anonymous
  • anonymous
just use the gauss theorem here. Take a closed spherical Gaussian surface with lie within the thickness of conducting shell. Since the electric field inside the conductor is zero here, so according to gauss law which is \[closed \int\limits E.dS = q(enclosed)/\epsilon\] . Since E is zero q enclosed must also be zero, so to do that charges(-3q here) from conducting shell comes to the inner side to make the net charge inside that gaussian surface zero.. And also due to conservation of charge , on the outer side +3q develops.
JamesJ
  • JamesJ
Exactly right.

Looking for something else?

Not the answer you are looking for? Search for more explanations.