Can anyone help me with sin(x)+sin(5x)=2?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Can anyone help me with sin(x)+sin(5x)=2?

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

what is the maximum of sin(x)?
The max for sin(x) = 1 so the only way the equation can equal 2 is for sin(x) and sin(5x) = 1.
Ok, but is there a way to solve it when not using a deductive method?

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

The value for x for sin(x) = 1 would be pi/2 in radians or 90 degrees. Therefore the value of sin(5*pi/2) also equal one and the sum equals two.
I think you could use the identity \[\sin \alpha + \sin \beta = 2\sin0.5(\alpha+\beta)\cos0.5(\alpha+\beta)\] and then set this equal to two. This would give you \[\sin0.5(\alpha+\beta)\cos0.5(\alpha+\beta)\] = 1
there are many correct values of x: pi/2, -pi/2, 3pi/2, etc etc
Correct values are (pi/2)+2 k pi.
@commdoc Typo: you mean sin(A) + sin(B) = 2sin((A+B)/2)cos((A-B)/2)
k is integer.
Thanks anyway.
yes - anytime sin(x) is not 1, you cannot get a solution. anytime sin(x) = 1, then sin(5x) = 1 as well, so you get a solution whenever sin(x)=1.
yeah thanks BF

Not the answer you are looking for?

Search for more explanations.

Ask your own question