I'm trying to prove A ∩ B ∩ C ⊆ A ∩ B but am stuck after this: Let x ∈ A ∩ B ∩ C 1. Therefore, x ∈ A and x ∈ B and x ∈ C

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

I'm trying to prove A ∩ B ∩ C ⊆ A ∩ B but am stuck after this: Let x ∈ A ∩ B ∩ C 1. Therefore, x ∈ A and x ∈ B and x ∈ C

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

..hence it is true that x ∈ A and x ∈ B. Therefore, x ∈ A ∩ B
Thanks JamesJ, that's along the lines of what I thinking, but it seemed too...simple an explanation at the time. I need to practice this type of problem more.
Keep at it!

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

The basic logical principle here is this. If X and Y are statements, then X and Y ==> X In other words, if you know two things are true, then each of their components is also true.

Not the answer you are looking for?

Search for more explanations.

Ask your own question