At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga.
Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus.
Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your **free** account and access **expert** answers to this and **thousands** of other questions.

See more answers at brainly.com

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your **free** account and access **expert** answers to this and **thousands** of other questions

Ok.Here we go .Fourier transform.
\[F(w)=1+e ^{-iaw}+e ^{iaw}\]

right. Now, you'll want to write that as some sort of sum of cos and sin

O.K.So it will be then :
\[1+2Cos(aw)\]

Now we should make its square value ?

For intensity, yes.

It's a nice pattern:
http://www.wolframalpha.com/input/?i=%281+%2B+2cos%28x%29%29%5E2

Wow nice.

Now, what happens if you phase shift the middle wave by pi?

No, that's like moving the slit over by pi. Phase shifting is something altogether different.

What will that do to the Fourier transform?

It should multiply a \[e^{(-\pi)} \] expression to Fourier transform.

e^(-pi.i) yes

and that simplifies to ...

-1

right. Hence the intensity now is proportional to ...

No, it's NOT the same.

You only multiply one term of the Fourier transform by \( e^{i\pi} \)