• anonymous
Find the real and complex zeros of the following function. f(x)=x^3-6x^2+21x-26
  • katieb
I got my questions answered at in under 10 minutes. Go to now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly


Get your free account and access expert answers to this
and thousands of other questions

  • Rogue
Some possible roots for this function are\[\pm 1, \pm 2, \pm 13, \pm 26\]since those are the possible factors of the constant, 26, divided by the possible factors of the leading coefficient, 1. Using synthetic division, you can test those out to see which ( x- a) is a factor. You'll see that 2 works. So now the polynomial gets factored into:\[f(x) = (x-2)(x^2 - 4x +13)\] Inspecting the quadratic will tell you that it is irreducible, you can have to solve it via the quadratic formula. Do so and you will see that your three solutions are:\[x =2, x = 2 \pm 3i\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.