(cos^4x−sin^4x)/(1−tan^4x)=cos^4x trig identity?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

(cos^4x−sin^4x)/(1−tan^4x)=cos^4x trig identity?

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

\[(\cos^4x−\sin^4x)/(1−\tan^4x)=\cos^4x\]
how do you prove this? :/
i would start by factoring the numerator, and then see that one of the factors is 1. that should make the rest easier

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

you can factor Mr. Denominator as well
i've tried that. i've went \[(\cos^2x+\sin^2x)(\cos^2x-\sin^2x)/(1-(\sin^4x/\cos^4x))\]
cos^2(x)+sin^2(x)=1
you don't need to get it all into sin and cos
cos^2(x)-sin^2(x)=cos(2x)
hmm.. when i try, numerator part and denominator part keep gets messed up :/
\[\frac{\cos(2x)}{1-\frac{\sin^4(x)}{\cos^4(x)}} \cdot \frac{\cos^4(x)}{\cos^4(x)}\] \[\frac{\cos^4(x) \cos(2x)}{\cos^4(x)-\sin^4(x)}=\frac{\cos^4(x)\cos(2x)}{\cos(2x)}=\cos^4(x)\]
since we already showed \[\cos^4(x)-\sin^4(x)=\cos(2x) \] earlier
great! thanks a lot.
you got it? :)
yup i've tried it out myself! thanks for the help.

Not the answer you are looking for?

Search for more explanations.

Ask your own question