anonymous
  • anonymous
Solve separable differential equation:
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
http://i39.tinypic.com/j0g1e1.jpg
anonymous
  • anonymous
You have that \[\frac{dy}{dx}=xy^2-x-y^2+1=x(y^2-1)-(y^2-1)=(x-1)(y^2-1)\] \[\frac{dy}{y^2-1}=(x-1)dx\] Using partial fractions you can rewrite the left hand side as \[\frac12\left(\frac{1}{y-1}-\frac{1}{y+1}\right)dy=(x-1)dx\] Integrating both sides then gives \[\frac12(\ln|y-1|-\ln|y+1|)=\frac12x^2-x+C\] Multiplying both sides by 2 and combining the logs gives \[\ln\left|\frac{y-1}{y+1}\right|=\ln\left|1-\frac{2}{y+1}\right|=x^2-2x+C\] Exponentiating each side gives \[1-\frac{2}{y+1}=Ae^{x^2-2x}\] And then simplifying gives yours final answer of \[y=\frac{2}{1-Ae^{x^2-2x}}-1\]
anonymous
  • anonymous
okay, I got stuck at the very first line with the factoring. Thank you so much.

Looking for something else?

Not the answer you are looking for? Search for more explanations.